Daigao Chen 1,2†Hongguang Zhang 1†Min Liu 1Xiao Hu 1,2[ ... ]Xi Xiao 1,2,3,*
Author Affiliations
Abstract
1 National Information Optoelectronics Innovation Center, China Information and Communication Technologies Group Corporation (CICT), Wuhan 430074, China
2 State Key Laboratory of Optical Communication Technologies and Networks, China Information and Communication Technologies Group Corporation (CICT), Wuhan 430074, China
3 Peng Cheng Laboratory, Shenzhen 518055, China
A light-trapping-structure vertical Ge photodetector (PD) is demonstrated. In the scheme, a 3 μm radius Ge mesa is fabricated to constrain the optical signal in the circular absorption area. Benefiting from the light-trapping structure, the trade-off between bandwidth and responsivity can be relaxed, and high opto-electrical bandwidth and high responsivity are achieved simultaneously. The measured 3 dB bandwidth of the proposed PD is around 67 GHz, and the responsivity is around 1.05 A/W at wavelengths between 1520 and 1560 nm. At 1580 nm, the responsivity is still over 0.78 A/W. A low dark current of 6.4 nA is also achieved at -2 V bias voltage. Based on this PD, a clear eye diagram of 100 GBaud four-level pulse amplitude modulation (PAM-4) is obtained. With the aid of digital signal processing, 240 Gb/s PAM-4 signal back-to-back transmission is achieved with a bit error ratio of 1.6×10-2. After 1 km and 2 km fiber transmission, the highest bit rates are 230 and 220 Gb/s, respectively.
Photonics Research
2022, 10(9): 2165
Yuguang Zhang 1,2†Hongguang Zhang 2†Junwen Zhang 3†Jia Liu 2[ ... ]Shaohua Yu 1,2,4
Author Affiliations
Abstract
1 State Key Laboratory of Optical Communication Technologies and Networks, China Information and Communication Technologies Group Corporation (CICT), Wuhan 430074, China
2 National Information Optoelectronics Innovation Center, Wuhan 430074, China
3 Key Laboratory of Information Science of Electromagnetic Waves (MoE), Fudan University, Shanghai 200433, China
4 Peng Cheng Laboratory, Shenzhen 518055, China
An ultrafast microring modulator (MRM) is fabricated and presented with Vπ·L of 0.825 V·cm. A 240 Gb/s PAM-8 signal transmission over 2 km standard single-mode fiber (SSMF) is experimentally demonstrated. PN junction doping concentration is optimized, and the overall performance of the MRM is improved. Optical peaking is introduced to further extend the EO bandwidth from 52 to 110 GHz by detuning the input wavelength. A titanium nitride heater with 0.1 nm/mW tuning efficiency is implemented above the MRM to adjust the resonant wavelength. High bit rate modulations based on the high-performance and compact MRM are carried out. By adopting off-line signal processing in the transmitter and receiver side, 120 Gb/s NRZ, 220 Gb/s PAM-4, and 240 Gb/s PAM-8 are measured with the back-to-back bit error ratio (BER) of 5.5×10-4, 1.5×10-2, and 1.4×10-2, respectively. A BER with different received optical power and 2 km SSMF transmission is also investigated. The BER for 220 Gb/s PAM-4 and 240 Gb/s PAM-8 after 2 km SSMF transmission is calculated to be 1.7×10-2 and 1.5×10-2, which meet with the threshold of soft-decision forward-error correction, respectively.
Photonics Research
2022, 10(4): 04001127
Author Affiliations
Abstract
1 National Information Optoelectronics Innovation Center, China Information and Communication Technologies Group Corporation (CICT), Wuhan 430074, China
2 State Key Laboratory of Optical Communication Technologies and Networks, China Information and Communication Technologies Group Corporation (CICT), Wuhan 430074, China
Up to now, the light coupling schemes of germanium-on-silicon photodetectors (Ge-on-Si PDs) could be divided into three main categories: (1) vertical (or normal-incidence) illumination, which can be from the top or back of the wafer/chip, and waveguide-integrated coupling including (2) butt coupling and (3) evanescent coupling. In evanescent coupling the input waveguide can be positioned on top, at the bottom, or lateral to the absorber. Here, to the best of our knowledge, we propose the first concept of Ge-on-Si PD with double lateral silicon nitride (Si3N4) waveguides, which can serve as a novel waveguide-integrated coupling configuration: double lateral coupling. The Ge-on-Si PD with double lateral Si3N4 waveguides features uniform optical field distribution in the Ge region, which is very beneficial to improving the operation speed for high input power. The proposed Ge-on-Si PD is comprehensively characterized by static and dynamic measurements. The typical internal responsivity is evaluated to be 0.52 A/W at an input power of 25 mW. The equivalent circuit model and theoretical 3 dB opto-electrical (OE) bandwidth investigation of Ge-on-Si PD with lateral coupling are implemented. Based on the small-signal (S21) radio-frequency measurements, under 4 mA photocurrent, a 60 GHz bandwidth operating at -3 V bias voltage is demonstrated. When the photocurrent is up to 12 mA, the 3 dB OE bandwidth still has 36 GHz. With 1 mA photocurrent, the 70, 80, 90, and 100 Gbit/s non-return-to-zero (NRZ) and 100, 120, 140, and 150 Gbit/s four-level pulse amplitude modulation clear openings of eye diagrams are experimentally obtained without utilizing any offline digital signal processing at the receiver side. In order to verify the high-power handling performance in high-speed data transmission, we investigate the eye diagram variations with the increase of photocurrents. The clear open electrical eye diagrams of 60 Gbit/s NRZ under 20 mA photocurrent are also obtained. Overall, the proposed lateral Si3N4 waveguide structure is flexibly extendable to a light coupling configuration of PDs, which makes it very attractive for developing high-performance silicon photonic integrated circuits in the future.
Photonics Research
2021, 9(5): 05000749
Author Affiliations
Abstract
1 National Information Optoelectronics Innovation Center, China Information and Communication Technologies Group Corporation (CICT), Wuhan 430074, China
2 State Key Laboratory of Optical Communication Technologies and Networks, China Information and Communication Technologies Group Corporation (CICT), Wuhan 430074, China
3 Accelink Technologies Co., Ltd., Wuhan 430205, China
4 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
5 Center of Material Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
6 e-mail: xxiao@wri.com.cn
7 e-mail: qinan@semi.ac.cn
We demonstrate the optical transmission of an 800 Gbit/s (4×200 Gbit/s) pulse amplitude modulation-4 (PAM-4) signal and a 480 Gbit/s (4×120 Gbit/s) on–off-keying (OOK) signal by using a high-bandwidth (BW) silicon photonic (SiP) transmitter with the aid of digital signal processing (DSP). In this transmitter, a four-channel SiP modulator chip is co-packaged with a four-channel driver chip, with a measured 3 dB BW of 40 GHz. DSP is applied in both the transmitter and receiver sides for pre-/post-compensation and bit error rate (BER) calculation. Back-to-back (B2B) BERs of the PAM-4 signal and OOK signal are first measured for each channel of the transmitter with respect to a variety of data rates. Similar BER performance of four channels shows good uniformity of the transmitter between different channels. The BER penalty of the PAM-4 and OOK signals for 500 m and 1 km standard single-mode fiber (SSMF) transmission is then experimentally tested by using one channel of the transmitter. For a 200 Gbit/s PAM-4 signal, the BER is below the hard-decision forward error correction (HD-FEC) threshold for B2B and below the soft-decision FEC (SD-FEC) threshold after 1 km transmission. For a 120 Gbit/s OOK signal, the BER is below SD-FEC threshold for B2B. After 500 m and 1 km transmission, the data rate of the OOK signal shrinks to 119 Gbit/s and 118 Gbit/s with the SD-FEC threshold, respectively. Finally, the 800 Gbit/s PAM-4 signal with 1 km transmission is achieved with the BER of all four channels below the SD-FEC threshold.
Photonics Research
2020, 8(11): 11001776
作者单位
摘要
中国科学院半导体研究所集成光电子国家重点联合实验室, 北京 100083
使用分布式反馈(DFB)激光器对法布里-珀罗(F-P)激光器进行单模注入锁定。通过改变F-P激光器的偏置电流,DFB激光器的输出功率以及两激光器间的波长失谐量,对注入锁定F-P激光器的光谱特性、功率特性以及频率响应特性进行实验分析,找出影响注入锁定F-P激光器稳定性的因素,并测量注入锁定F-P激光器的稳定锁定区; 通过优化注入条件实现F-P激光器的高边模抑制比(SMSR)输出,最高可达55 dB; 通过与自由运转F-P激光器比较,发现注入锁定可以明显抑制半导体激光器在高频调制下光谱的展宽。注入锁定后F-P激光器的3 dB调制带宽接近14 GHz。实验结果表明,通过合理设计光注入条件,注入锁定技术可以明显改善F-P激光器的光谱特性以及高频响应特性,并在高速光纤通信领域中得到广泛应用。
激光器 光通信技术 法布里-珀罗半导体激光器 注入锁定 频率响应 
中国激光
2008, 35(9): 1318

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!